38 research outputs found

    Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks

    Get PDF
    The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a >>100x energy improvement for our SRNNs over classical RNNs on the harder tasks. To achieve this, we model standard and adaptive multiple-timescale spiking neurons as self-recurrent neural units, and leverage surrogate gradients and auto-differentiation in the PyTorch Deep Learning framework to efficiently implement backpropagation-through-time, including learning of the important spiking neuron parameters to adapt our spiking neurons to the tasks.Comment: 11 pages,5 figure

    Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks

    Get PDF
    Inspired by detailed modelling of biological neurons, spiking neural networks (SNNs) are investigated as biologically plausible and high-performance models of neural computation. The sparse and binary communication between spiking neurons potentially enables powerful and energy-efficient neural networks. The performance of SNNs, however, has remained lacking compared with artificial neural networks. Here we demonstrate how an activity-regularizing surrogate gradient combined with recurrent networks of tunable and adaptive spiking neurons yields the state of the art for SNNs on challenging benchmarks in the time domain, such as speech and gesture recognition. This also exceeds the performance of standard classical recurrent neural networks and approaches that of the best modern artificial neural networks. As these SNNs exhibit sparse spiking, we show that they are theoretically one to three orders of magnitude more computationally efficient compared to recurrent neural networks with similar performance. Together, this positions SNNs as an attractive solution for AI hardware implementations

    An image representation based convolutional network for DNA classification

    Get PDF
    The folding structure of the DNA molecule combined with helper molecules, also referred to as the chromatin, is highly relevant for the functional properties of DNA. The chromatin structure is largely determined by the underlying primary DNA sequence, though the interaction is not yet fully understood. In this paper we develop a convolutional neural network that takes an image-representation of primary DNA sequence as its input, and predicts key determinants of chromatin structure. The method is developed such that it is capable of detecting interactions between distal elements in the DNA sequence, which are known to be highly relevant. Our experiments show that the method outperforms several existing methods both in terms of prediction accuracy and training time.Comment: Published at ICLR 2018, https://openreview.net/pdf?id=HJvvRoe0

    LocalNorm: Robust image classification through dynamically regularized normalization

    Get PDF
    While modern convolutional neural networks achieve outstanding accuracy on many image classification tasks, they are, compared to humans, much more sensitive to image degradation. Here, we describe a variant of Batch Normalization, LocalNorm, that regularizes the normalization layer in the spirit of Dropout while dynamically adapting to the local image intensity and contrast at test-time. We show that the resulting deep neural networks are much more resistant to noise-induced image degradation, improving accuracy by up to three times, while achieving the same or slightly better accuracy on non-degraded classical benchmarks. In computational terms, LocalNorm adds negligible training cost and little or no cost at inference time, and can be applied to already-trained networks in a straightforward manner

    Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks

    Get PDF
    The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a > 100x energy improvement for our SRNNs over classical RNNs on the harder tasks. To achieve this, we model standard and adaptive multiple-timescale spiking neurons as self-recurrent neural units, and leverage surrogate gradients and auto-differentiation in the PyTorch Deep Learning framework to efficiently implement backpropagation-through-time, including learning of the important spiking neuron parameters to adapt our spiking neurons to the tasks

    An image representation based convolutional network for DNA classification

    Get PDF
    The folding structure of the DNA molecule combined with helper molecules, also referred to as the chromatin, is highly relevant for the functional properties of DNA. The chromatin structure is largely determined by the underlying primary DNA sequence, though the interaction is not yet fully understood. In this paper we develop a convolutional neural network that takes an image-representation of primary DNA sequence as its input, and predicts key determinants of chromatin structure. The method is developed such that it is capable of detecting interactions between distal elements in the DNA sequence, which are known to be highly relevant. Our experiments show that the method outperforms several existing methods both in terms of prediction accuracy and training time

    Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks

    Get PDF
    The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a >100x energy improvement for our SRNNs over classical RNNs on the harder tasks. To achieve this, we model standard and adaptive multiple-timescale spiking neurons as self-recurrent neural units, and leverage surrogate gradients and auto-differentiation in the PyTorch Deep Learning framework to efficiently implement backpropagation-through-time, including learning of the important spiking neuron parameters to adapt our spiking neurons to the tasks

    Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by aberrations in the genome. While several disea
    corecore